Identification of a Hybrid Spring Mass Damper via Harmonic Transfer Functions as a Step Towards Data-Driven Models for Legged Locomotion
نویسندگان
چکیده
There are limitations on the extent to which manually constructed mathematical models can capture relevant aspects of legged locomotion. Even simple models for basic behaviours such as running involve non-integrable dynamics, requiring the use of possibly inaccurate approximations in the design of model-based controllers. In this study, we show how data-driven frequency domain system identification methods can be used to obtain input–output characteristics for a class of dynamical systems around their limit cycles, with hybrid structural properties similar to those observed in legged locomotion systems. Under certain assumptions, we can approximate hybrid dynamics of such systems around their limit cycle as a piecewise smooth linear time periodic system (LTP), further approximated as a time-periodic, piecewise LTI system to reduce parametric degrees of freedom in the identification process. In this paper, we use a simple one-dimensional hybrid model in which a limit-cycle is induced through the actions of a linear actuator to illustrate the details of our method. We first derive theoretical harmonic transfer functions of our example model. We then excite the model with small chirp signals to introduce perturbations around its limit-cycle and present systematic identification results to estimate the harmonic transfer functions for this model. Comparison between the data-driven HTF model and its theoretical prediction illustrates the potential effectiveness of such empirical identification methods in legged locomotion.
منابع مشابه
Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode
In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...
متن کاملIdentification of Nonlinear Modal Interactions in a Beam-Mass-Spring-Damper System based on Mono-Frequency Vibration Response
In this paper, nonlinear modal interactions caused by one-to-three internal resonance in a beam-mass-spring-damper system are investigated based on nonlinear system identification. For this purpose, the equations governing the transverse vibrations of the beam and mass are analyzed via the multiple scale method and the vibration response of the system under primary resonance is extracted. Then,...
متن کاملTowards a Factored Analysis of Legged Locomotion Models
In this paper, we report on a new stability analysis for hybrid legged locomotion systems based on factorization of return maps. We apply this analysis to a family of models of the Spring Loaded Inverted Pendulum (SLIP) with different leg recirculation strategies. We obtain a necessary condition for the asymptotic stability of those models, which is formulated as an exact algebraic expression d...
متن کاملSimple Models of Legged Locomotion based on Compliant Limb Behavior Grundmodelle pedaler Lokomotion basierend auf nachgiebigem Beinverhalten
In this dissertation, simple models of legged locomotion are developed mainly following the hypothesis that rather than reflecting two distinct phenomena, the fundamental gait patterns of walking and running can be described within a single conceptual framework that is based on compliant limb behavior. In Chapter 1, the most prominent mechanical paradigms of walking and running, namely the stif...
متن کاملRate-dependent control strategies stabilize limb forces during human locomotion.
A spring-mass model accurately predicts centre of mass dynamics for hopping and running animals and is pervasive throughout experimental and theoretical studies of legged locomotion. Given the neuromechanical complexity of the leg, it remains unclear how joint dynamics are selected to achieve such simple centre of mass movements consistently from step to step and across changing conditions. Hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1501.05628 شماره
صفحات -
تاریخ انتشار 2015